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This deliverable describes the fifth task which is related to scalable inference. Specifically; it shows that the proposed 

inference algorithms of the previous deliverables work online. A full description of the scalable inference algorithms 

can be found in the previous deliverables and enclosed papers.

Context:
The High Frequency Appliance Disaggregation Analysis (HFADA) project builds upon work undertaken in the Smart 

Systems and Heat (SSH) programme delivered by the Energy Systems Catapult for the ETI, to refine intelligence and 

gain detailed smart home energy data. The project analysed in depth data from five homes that trialed the SSH 

programme’s Home Energy Management System (HEMS) to identify which appliances are present within a building 

and when they are in operation. The main goal of the HFADA project was to detect human behaviour patterns in order 

to forecast the home energy needs of people in the future. In particular the project delivered a detailed set of data 

mining algorithms to help identify patterns of building occupancy and energy use within domestic homes from water, 

gas and electricity data.

Disclaimer: The Energy Technologies Institute is making this document available to use under the Energy Technologies Institute Open Licence for 

Materials. Please refer to the Energy Technologies Institute website for the terms and conditions of this licence. The Information is licensed ‘as is’ 

and the Energy Technologies Institute excludes all representations, warranties, obligations and liabilities in relation to the Information to the 

maximum extent permitted by law. The Energy Technologies Institute is not liable for any errors or omissions in the Information and shall not be 

liable for any loss, injury or damage of any kind caused by its use. This exclusion of liability includes, but is not limited to, any direct, indirect, 

special, incidental, consequential, punitive, or exemplary damages in each case such as loss of revenue, data, anticipated profits, and lost 

business. The Energy Technologies Institute does not guarantee the continued supply of the Information. Notwithstanding any statement to the 

contrary contained on the face of this document, the Energy Technologies Institute confirms that it has the right to publish this document.

Programme Area: Smart Systems and Heat

Project: WP1 Appliance Disaggregation

Online learning and distributed learning
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1. History 

Date Issue Details of Change 
 

 Version 0.0 Initial Version.  
Authors:  
          Saad Mohamad 
          Hamid Bouchachia  
 

 

2. Documents Referenced 

Ref Document Title 
 

1 Word document that 
describes the HEMS data. 

Data collection and data format –  
ELECTRIC, WATER and HEMS-V1 
MONITORING 

2 Word document that 
describes the HEMS V1 
Mongo data base structure. 

 
HEMS V1 Mongo Data Base Structure 

3 Deliverable 1 HFADA_Deliverable_Ver2 
4 Deliverable 2 HFADA_Deliverable2_V0 
 Deliverable 3 HFADA_Deliverable3_V0 
5 Paper Deep Online Hierarchical Unsupervised Learning 

for Pattern Mining from Utility Usage Data 
6 Paper Deep Online Hierarchical Dynamic Unsupervised 

Learning for Pattern Mining from Utility Usage 
Data 

3. Glossary of Terms 

Ref Description 
 

ETI Energy Technologies Institute 
HEMS Home Energy Management System (also referred to as HEMS V1) 
HFAD High Frequency Appliance Detection 
LDA Latent Dirichlet Allocation  
GLDA Gaussian Latent Dirichlet Allocation 
DBN Deep Belief network 
HMM Hidden Markov Model 
DBN-LDA-
HMM 

Our proposed Deep-Hierarchical-Dynamic model 

NILM Non-intrusive load monitoring 
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4. Executive Summary 

This deliverable describes the fifth task which is related to scalable inference. 

Specifically; it shows that the proposed inference algorithms of the previous 

deliverables already work online which satisfies the requirements of deliverable 5. A 

full description of the scalable inference algorithms can be found in the previous 

deliverables and enclosed papers. 

5. Introduction 

As mentioned in the previous reports, the size of the available data is very huge 

(around 80Tb). Algorithms processing such large data must observe time and memory 

restrictions [1, 4]. In this project, we proposed complex hierarchical models to extract 

knowledge from the complex and big data which makes the time and memory 

restrictions even more challenging. 

 Probabilistic models with latent variables have grown into a backbone in many 

modern machine learning applications such as text analysis, computer vision, time 

series analysis, network modelling, and others. The main challenge in such models is 

to compute the posterior distribution over some hidden variables encoding hidden 

structure in the observed data. Generally, computing the posterior is intractable and 

approximation is required. Markov chain Monte Carlo (MCMC) sampling has been the 

dominant paradigm for posterior computation. It constructs a Markov chain on the 

hidden variables whose stationary distribution is the desired posterior. Hence, the 

approximation is based on sampling for a long time to (hopefully) collect samples from 

the posterior [11].  

Recently, variational inference (VI) has become widely used as a deterministic 

alternative approach to MCMC sampling. In general, VI tends to be faster than MCMC 

which makes it more suitable for problems with large data sets. VI turns the inference 

problem to an optimization problem by positing a simpler family of distributions and 

finding the member of the family that is closest to the true posterior distribution [8]. 

Hence, the inference task boils down to an optimization problem of a non-convex 

objective function. This allows us to bring sophisticated tools from optimization 

literature to tackle the performance problems. Recently, stochastic optimisation has 

been applied to VI in order to cope with massive data [2]. While VI requires repeatedly 

iterating over the whole data set before updating the variational parameters 

(parameters of the variational objective), stochastic variational inference (SVI) updates 

the parameters every time a single data example is processed. Therefore, by the end 

of one pass through the dataset, the parameters will have been updated multiple 

times. Hence, the model parameters converge faster, while using less computational 

resources. The idea of SVI is to move the variational parameters at each iteration in 

the direction of a noisy estimate of the variational objective’s natural gradient based 

on a couple of examples [2]. Following these stochastic gradients with certain 
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conditions on the (decreasing) learning rate schedule, SVI provably converges to a 

local optimum [12]. 

SVI is inherently serial and requires the model parameters to fit in the memory of a 

single processor. Authors in [13] present an inference algorithm, where the data is 

divided across several workers and each of them performs VI updates in parallel.  

However, at each iteration, the workers are synchronised to combine their obtained 

parameters. Such synchronisation limits the scalability and decreases the speed of 

the update to that of the slowest worker. To avoid bulk synchronisation, authors in [10] 

adopt asynchronous distributed update based on few (mini-batched or single) data 

points acquired from distributed sources.  The update steps are then aggregated to 

form the global update. 

In this project, we developed online inference versions of the proposed complex 

hierarchical models. The main concept is inspired form the development of SVI from 

VI. In deliverable 2, GLDA is derived from the family of model presented in [2]. This is 

done by specifying the distributions from the exponential family, then developing the 

corresponding update equations. More details can be found in the next section. In 

deliverable 3, the proposed model can also be cast as a member of the family of 

models discussed in [2]. However, some structure in the model can be exploited to 

allow better inference than when applying SVI. Hence, inspired form SVI [2] and [9], 

we develop a novel online inference algorithm. More details can be found in the next 

section.  

6. Online Models and Inference  

In the following, we present an overview of the models in each deliverable and their 

proposed online inference algorithms.  

6.1 Online Inference for GLDA 

As explained in Deliverable 2, Gaussian Latent Dirichlet Allocation (GLDA) is based 

on hierarchical Bayesian mixture model. More precisely, this model is a member of the 

family of graphical models proposed by [2] where observations (input data), global 

hidden variables, local hidden variables, and some fixed parameters are brought 

together to define the structure of the model. Under some assumptions, in addition to 

those indicated in [2], we end up with a Gaussian version of Latent Dirichlet Allocation 

(GDLA) where the observations (input data) are continuous. In particular, we assume 

that the hidden local variables are conditionally independent. Hence, the observations 

can be treated as a bag of words. This approach has drawn inspiration from the 

success that LDA has achieved in the domain of text modelling. GLDA only differs 

from LDA in the distribution over the input data, whereas in GLDA, it is Gaussian 

distribution while LDA uses Multinomial distribution. Since the distribution over the 

global components of GLDA must be the conjugate distribution of the one over the 

input, we end up with Normal-inverse-Wishart rather than the Dirichlet distribution as 
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in LDA. Changing these two distributions lead to new update equations for the 

inference algorithm of GLDA. More details can be found in the enclosed paper [5].  

The purpose of the inference algorithm is to approximate an intractable posterior 

representing the energy consumption patterns. Variational inference (VI) 

approximates this posterior by positing a family of simple distributions (proxy) and find 

the member of the family that is closest to the posterior (closeness is measured with 

KL divergence). The resulting optimization problem is equivalent to maximizing the 

evidence lower bound (ELBO) [5]. To find the targeted approximate distribution, VI 

optimizes ELBO with respect to variational parameters defining the simple distribution 

approximating the real intractable posterior. However, VI requires going through the 

whole data at each optimisation iteration.  Therefore, rather than analysing all the data 

to compute the update of each iteration, stochastic optimization can be used. 

Assuming that the data samples are uniformly randomly selected from the dataset, an 

unbiased noisy natural gradient can be computed based on a single data point. More 

details can be found in the enclosed paper [5]. 

6.2 Online Inference for LDA-HMM 

In deliverable 3, The proposed approach is a three-module architecture composed of 

Deep Belief Network (DBN), a hierarchical Bayesian mixture model based on Latent 

Dirichlet Allocation (LDA) and a Dynamic Bayesian Network model based on Bayesian 

Hidden Markov Model (HMM). Hence, we call it DBN-LDA-HMM. DBN is pre-trained 

and used to extract informative features from the raw input. LDA-HMM is then applied 

on the new feature space. This model was motivated by the success and the efficiency 

of the bag-of-features approach, adopted by topic modelling, in solving general high-

level problems. The temporal ordering power of HMM is used to correlate the activity 

at high-level. Thus, DBN constructs appliance-specific features which are used by the 

hierarchical Bayesian mixture model to construct components (topic)-specific features. 

Mixtures of these components form the residents' energy consumption patterns. The 

dynamic modelling part exploits the temporal regularity in the human behaviour 

leading to better performance and allowing forecasting energy demand.  

We propose an online inference algorithm, inspired by [2], which exploits the HMM-

part structure allowing scalable inference to cope with the massive amount of energy 

consumption data. The developed update equations involve terms closely related to 

LDA and other related to HMM. It can be easily shown that LDA-HMM is a member of 

the family of graphical models proposed in [2] where observations, global hidden 

variables, local hidden variables, and fixed parameters are involved. The global hidden 

variables include appliance-related (low-level) variables, patterns-related (high-level) 

variables and dynamic-related variables. The local hidden variables include HMM 

”state” selection variables and LDA ”topic” selection variables. The state variables are 

distributed according to Multinomial distribution governed by the global dynamic 

parameters. They select the patterns generating the topic selection variables which 

are also Multinomial distribution. Note that the observations are the discrete output of 

the DL algorithm. Hence, SVI for LDAHMM can be derived following similar but more 
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complicated steps as LDA in [2] and HMM in [9]. However, for simplification, we 

develop tailored SVI to LDA-HMM.  

Similar to GLDA, our ultimate purpose is to compute the posterior distribution over the 

hidden variables or some of them. By doing so, we can get insight into the energy 

consumption behaviour and lifes1tyle of the residents. However, it can be clearly seen 

that computing such posterior is intractable and approximation is needed. In contrast 

ot GLDA where the mean-field variational family, which is the commonly used and 

simplest approximation where each hidden variable is independent and governed by 

its own parameter, is used. We propose partial mean-field variational distributions by 

retaining the dynamic structure of the HMM-part of the model because inference for 

those variables is tractable using the well-known Forward-backward algorithm. More 

details can be found in the enclosed paper [7]. 

7.  Scaling-up the Models  

In order to cope with the real-time aspect efficiently, the proposed algorithms GLDA 

and DBN-LDA-HMM have implemented on a distributed platform using ps-lite2 

framework. The goal of the parameter server to coordinate distributed machine 

learning applications. As shown in Figure 1 below, ps-lite generalises the Master-Slave 

architecture by enabling server nodes, servers nodes and a schedule node.  

 

Figure 1: ps-lite framework 

Worker nodes are responsible for the computations, the server nodes maintain the 
overall model. Worker nodes communicate with the server nodes via push and pull. A 
worker node pushes its partial results to the servers and pulls the up-to-date model 
from the servers. On the other hand, the scheduler node monitors the aliveness of 
other nodes.  

The details of the distributed implementation of the proposed algorithms are mainly 

based on the synchronous variational inference algorithm proposed in [10].  

                                                           
1 https://github.com/dmlc/ps-lite/blob/master/docs/overview.md  
2 ps: stands for “parameter server” 
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8.  Conclusion 

In this report, we have briefly explained how the proposed can cope with high velocity 

and big volumes of data by enabling online and distributed learning. Overall, the 

present work is original and most of it has been submitted for publication.  

9.  References 

[1] https://www.proteus-bigdata.com/project-description/scalable-online-machine-learning/  

[2] Hoffman, Matthew D., et al. "Stochastic variational inference." Journal of Machine Learning 

Research 14.1 (2013): 1303-1347. 

[3] Mohamad, Saad, Abdelhamid Bouchachia, and Moamar Sayed-Mouchaweh. "A Bi-Criteria 

Active Learning Algorithm for Dynamic Data Streams." IEEE Transactions on Neural Networks and 

Learning Systems .2016. 

[4] Gama, João, et al. "A survey on concept drift adaptation." ACM Computing Surveys (CSUR) 

46.4 (2014): 44. 

[5] Saad Mohamad, Abdelhamid Bouchachia “Online Gaussian  LDA  for  unsupervised pattern 
mining from utility usage data”. Submitted to ECML-PKDD, 2018 
 
[6] Saad Mohamad, Damla Arifoglu, Chemseddine Mansouri, and Abdelhamid Bouchachia “Deep 
online hierarchical unsupervised learning for pattern mining from utility usage data”. Submitted to UKCI, 
2018 
 
[7] Saad Mohamad, Damla Arifoglu, Chemseddine Mansouri, and Abdelhamid Bouchachia “Deep 
Online Hierarchical Dynamic Unsupervised Learning for Pattern Mining from Utility Usage Data”. 
Submitted to PAMI, 2018 
 
[8] Martin J. Wainwright and Michael I. Jordan. "Graphical models, exponential families, and 
variational inference." Foundations and Trends® in Machine Learning 1.1–2 (2008): 1-305. 
 
[9] M. Johnson and A. Willsky, “Stochastic variational inference for bayesian time series models,” 
in International Conference on Machine Learning, 2014, pp. 1854–1862 
 
[10] Saad Mohamad, Abdelhamid Bouchachia, and Moamar Sayed-Mouchaweh. "Asynchronous 
Stochastic Variational Inference." arXiv preprint arXiv:1801.04289 (2018). 
 
[11] Christophe Andrieu, Nando De Freitas, Arnaud Doucet, and Michael I Jordan. 2003. An 
introduction to MCMC for machine learning. Machine learning 50, 1-2 (2003), 5–43. 
 
[12] Herbert Robbins and Sutton Monro. 1951. A stochastic approximation method. 
The annals of mathematical statistics (1951), 400–407. 
 
[13] Neiswanger, Willie, Chong Wang, and Eric Xing. "Embarrassingly Parallel Variational Inference 
in Non-Conjugate Models." arXiv preprint arXiv:1510.04163(2015). 
 
 


